# Fairness, Ethics, and Healthcare

**IRENE CHEN (MIT)** 

CSC2541HS GUEST LECTURE



"Tuskegee Study of Untreated Syphilis in the Negro Male" (1932)

#### Ethics in healthcare is nothing new

- Drug pricing: The strange world of Canadian drug pricing (The Toronto Star, Jan 2019)
- Opioid epidemic: Massachusetts Attorney General Implicates Family Behind Purdue Pharma In Opioid Deaths (NPR, Jan 2019)
- Retracted studies: Harvard Calls for Retraction of Dozens of Studies by Noted Cardiac Researcher (NYT, Oct 2018)
- Conflict of interest: Sloan Kettering's Cozy Deal with Start-Up Ignites a New Uproar (NYT, Sept 2018)
- Clinical trial populations: Clinical Trials Still Don't Reflect the Diversity of America (NPR, Dec 2015)

# What about algorithms?

#### Algorithms change the discussion

- What is reasonable safety for autonomous systems?
- Is the patient informed about risks and benefits?
- What about privacy and data collection?
- Who should regulate? Should these be for-profit black box algorithms?
- What about diversity? What populations are these tested on and then applied to?

### Would you be okay with an algorithm for:

- Cardiovascular disease risk to prescribe treatment?
- Government disability severity to allocate care?
- Child endangerment risk to decide in-home visits?

Ann Intern Med. 2018 Jul 3;169(1):20-29. doi: 10.7326/M17-3011. Epub 2018 Jun 5.

Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk.

Yadlowsky S1, Hayward RA2, Sussman JB2, McClelland RL3, Min YI4, Basu S5.

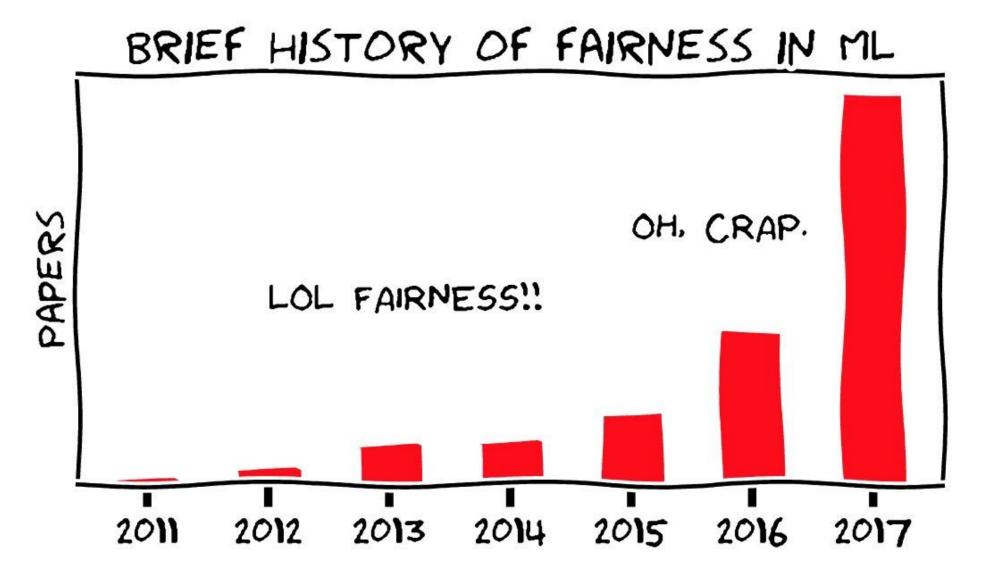
SCIENCE

## WHAT HAPPENS WHEN AN ALGORITHM CUTS YOUR HEALTH CARE

By Colin Lecher | @colinlecher | Mar 21, 2018, 9:00am EDT

Illustrations by William Joel; Photography by Amelia Holowaty Krales





[Hardt, 2018]

#### Formalization of Fairness

- Fairness through blindness
- Demographic parity (or group fairness or statistical parity)
- Calibration (or predictive parity)
- Error rate balance (or equalized odds)
- Representation learning
- Causality and fairness
- ... and many others! [Narayanan et al, 2018]

#### Discussion points

- What are relevant protected groups?
- O How do we define or measure unfairness?
- What are areas of healthcare where we might be concerned about bias?

#### Fairness through Blindness

- Plan: Remove any sensitive group from data
- **Example**: Predict diabetes risk Y from clinical features X and race A using  $P(\hat{Y} = Y | X)$  instead of  $P(\hat{Y} = Y | X, A)$

#### O Problems:

- $\circ$  A might have predictive value. What if Y = A?
- Other features of X might be correlated with A



#### Demographic parity

- o **Plan**: Require same fraction of  $\hat{Y} = 1$  for each group A
- **Example**: Predict diabetes risk Y from clinical features X and race A such that  $P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$

#### O Problems:

- What if true Y perfectly correlates with A?
- o Too strong: even perfect prediction  $Y = \hat{Y}$  doesn't satisfy requirements
- Too weak: doesn't control error rate, could be perfectly biased (wrong for all A = 1, correct for A = 0) and still have demographic parity

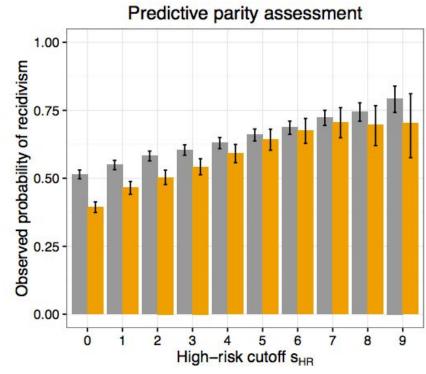
#### Calibration

- Plan: Same positive predictive value across groups
- Example: Predict diabetes risk Y from score S with threshold T from clinical features X and race A such that

$$P(Y = 1|S > T, A = 0)$$
  
=  $P(Y = 1|S > T, A = 1)$ 

#### O Problems:

Might be in conflict with error rate balance



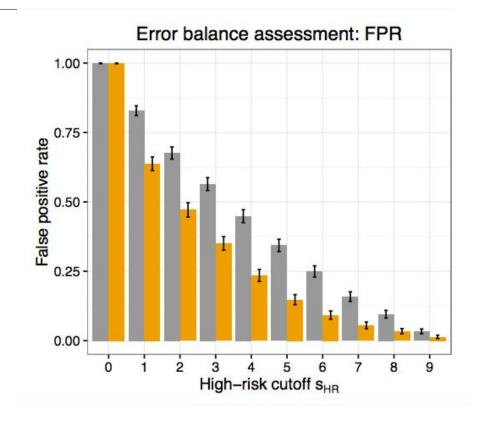
[Chouldechova, 2018]

#### Error rate balance

- Plan: Same positive predictive value across groups
- Example: Predict diabetes risk Y from score S with threshold T from clinical features X and race A such that

$$P(S > T|Y = 0, A = 0)$$
  
=  $P(S > T|Y = 0, A = 1)$ 

- O Problems:
  - Might be in conflict with calibration



[Chouldechova, 2018]

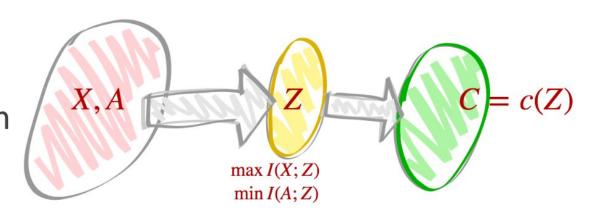
#### Representation learning

- Plan: Learn latent representation to minimize group information
- Example: Predict diabetes risk Y from score S with threshold T from clinical features X and race A such that

 $\max I(X; Z)$  and  $\min I(A; Z)$ 

#### O Problems:

 How to ensure you are not losing too much info and learning right representation?



[Zemel et al, 2013]

#### Causal inference and fairness

- o Plan: Group A should not be cause of prediction  $\widehat{Y}$
- Example: Predict diabetes risk Y from clinical features X and race A such that

$$P(\hat{Y}_{A\leftarrow a}\;(U)=y\mid X=x,A=a)$$
 $=P(\hat{Y}_{A\leftarrow a'}(U)=y\mid X=x,A=a)$ 
 $=P(\hat{Y}_{A\leftarrow a'}(U)=y\mid X=x,A=a)$ 

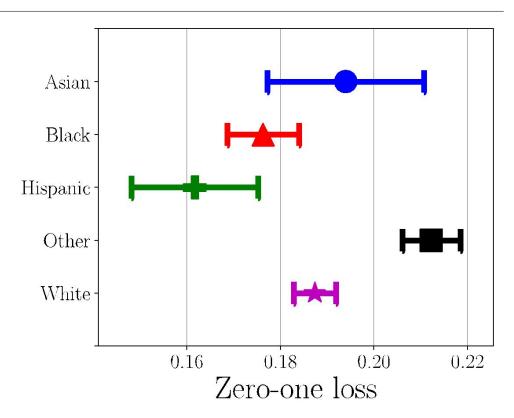
- Creating a st
- Creating a structural model encodes prior beliefs about world
- Causal inference often requires ignorability assumptions

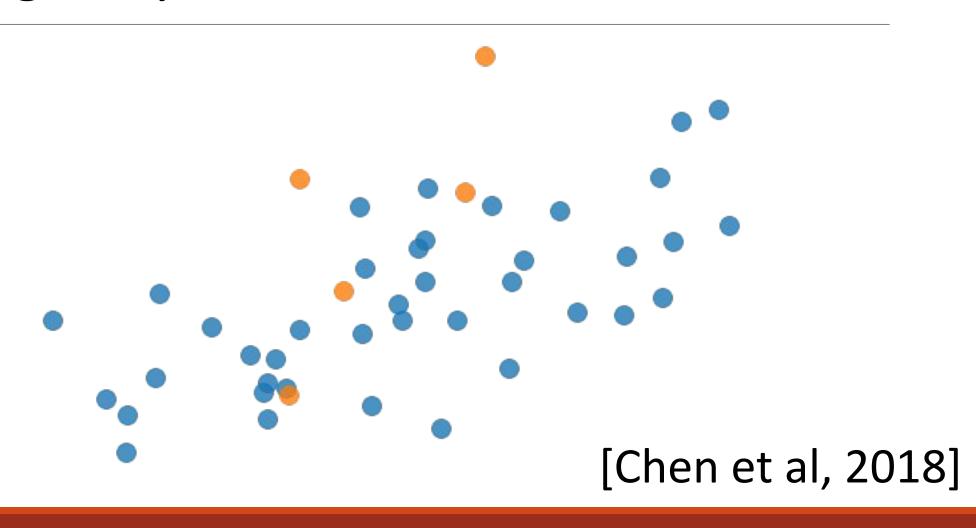
[Kusner et al, 2017]

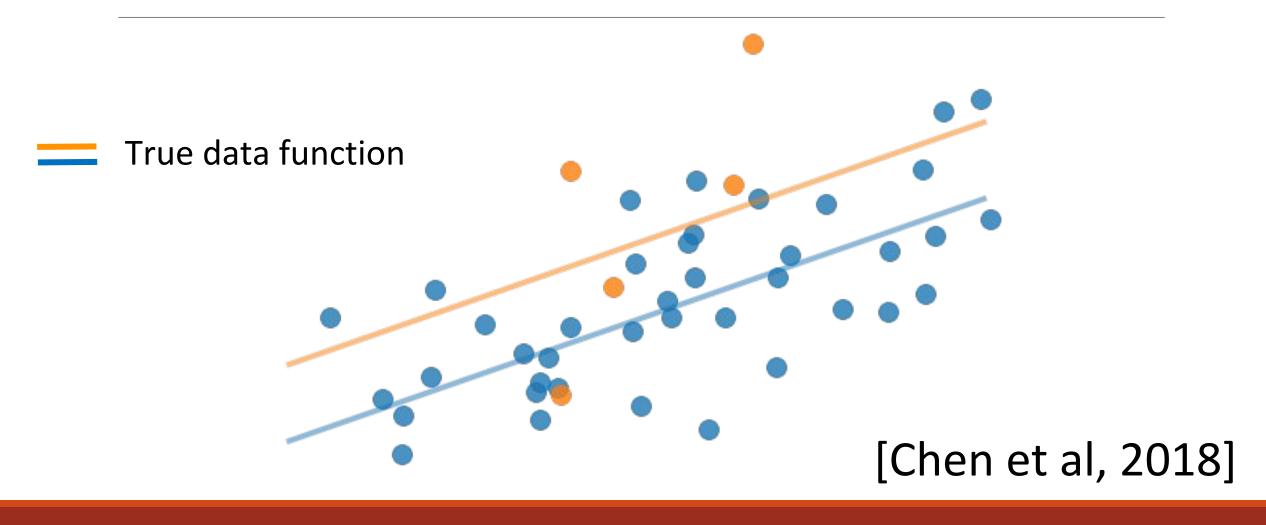
#### What about the data?

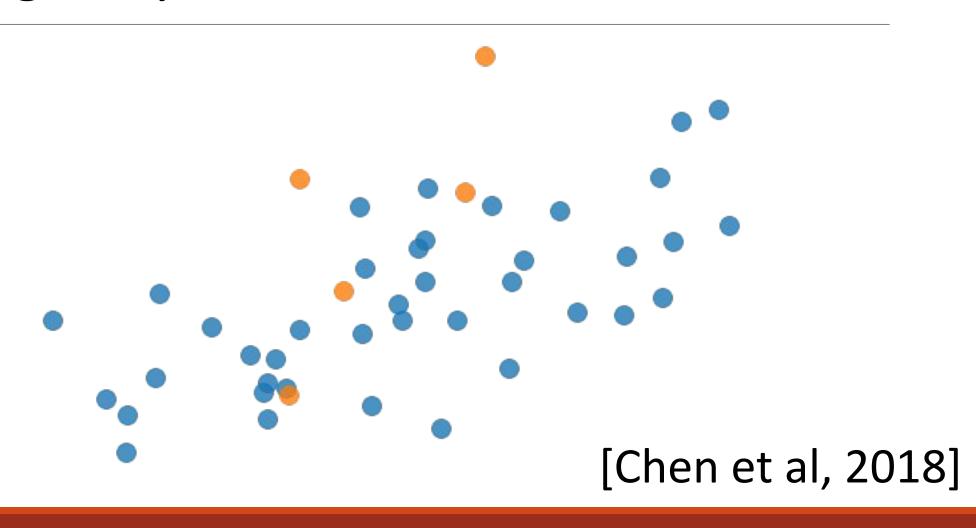
## Predicting hospital mortality from MIMIC

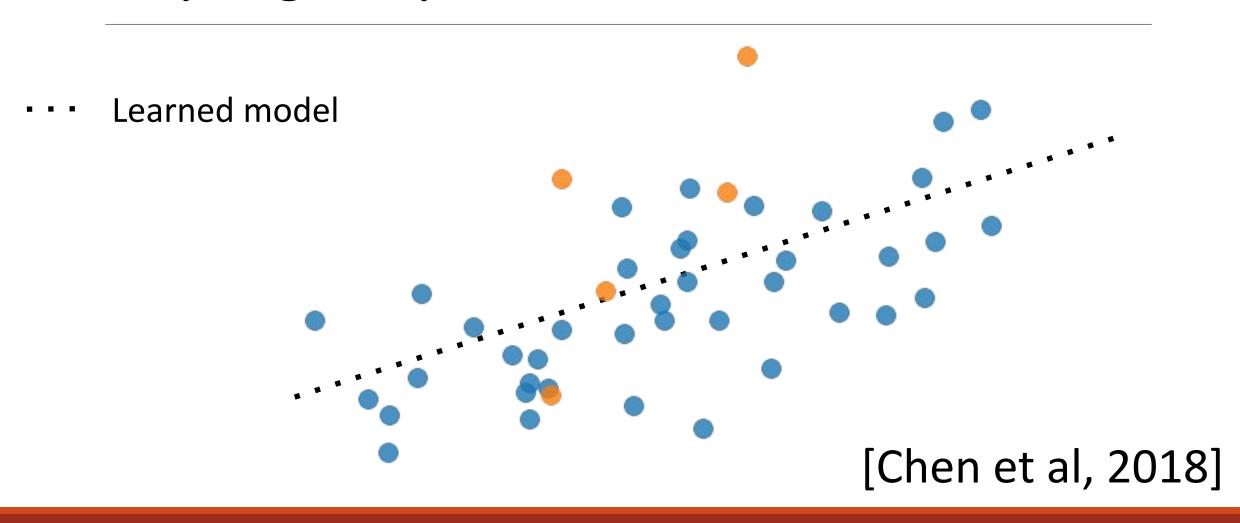
- O Using clinical notes, can we predict hospital mortality from MIMIC data?
- We train a L1-regularized logistic regression.
- O How do the accuracies differ by racial group?
- What might cause these discrepancies?

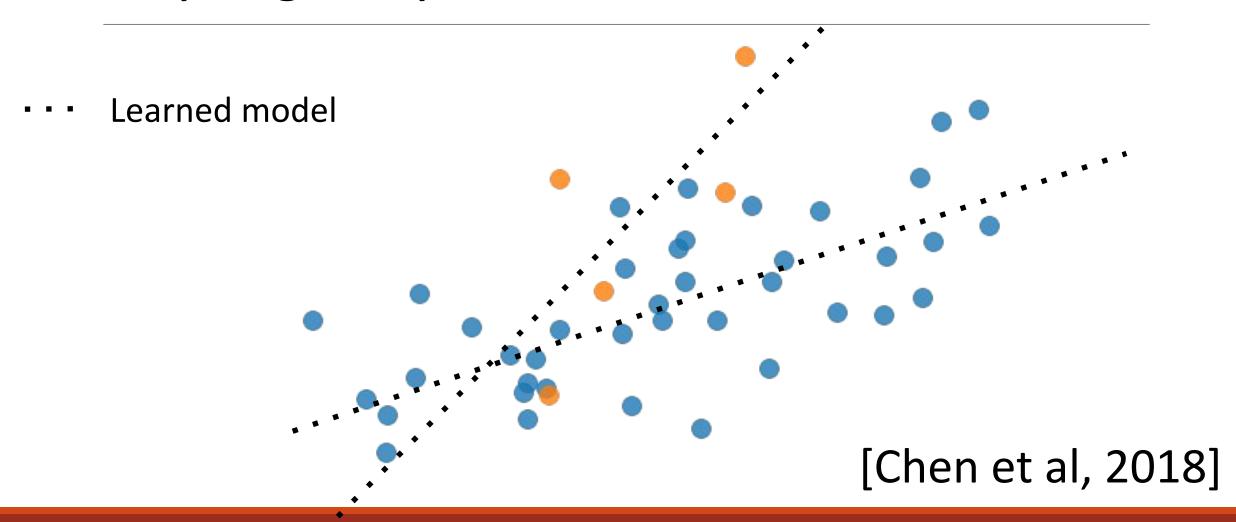


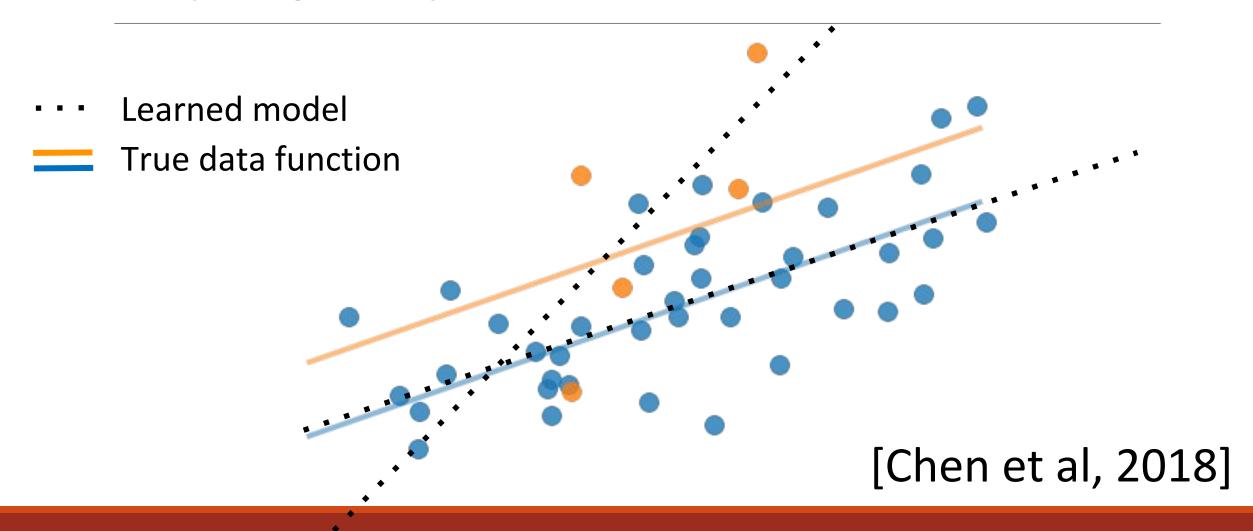




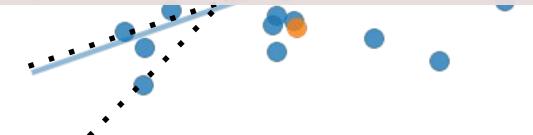




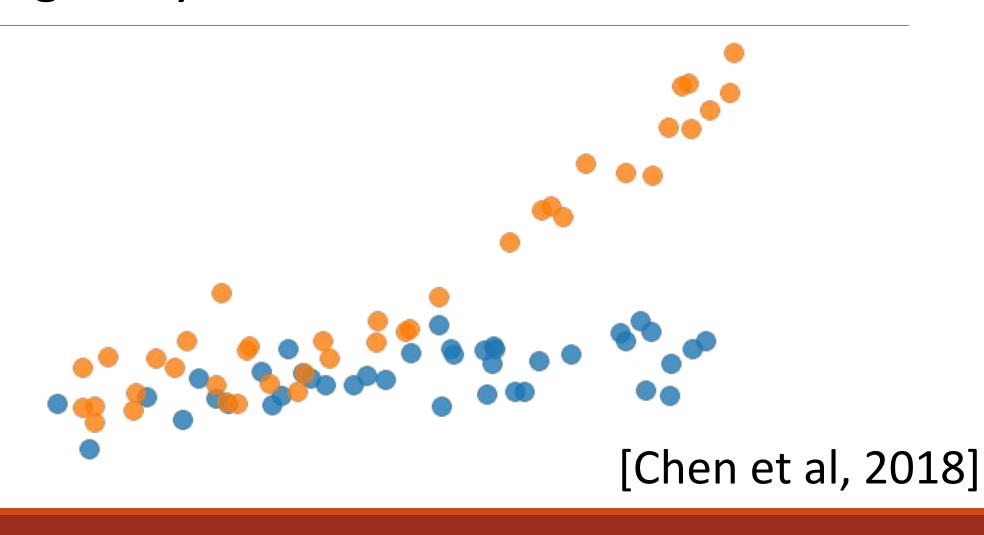


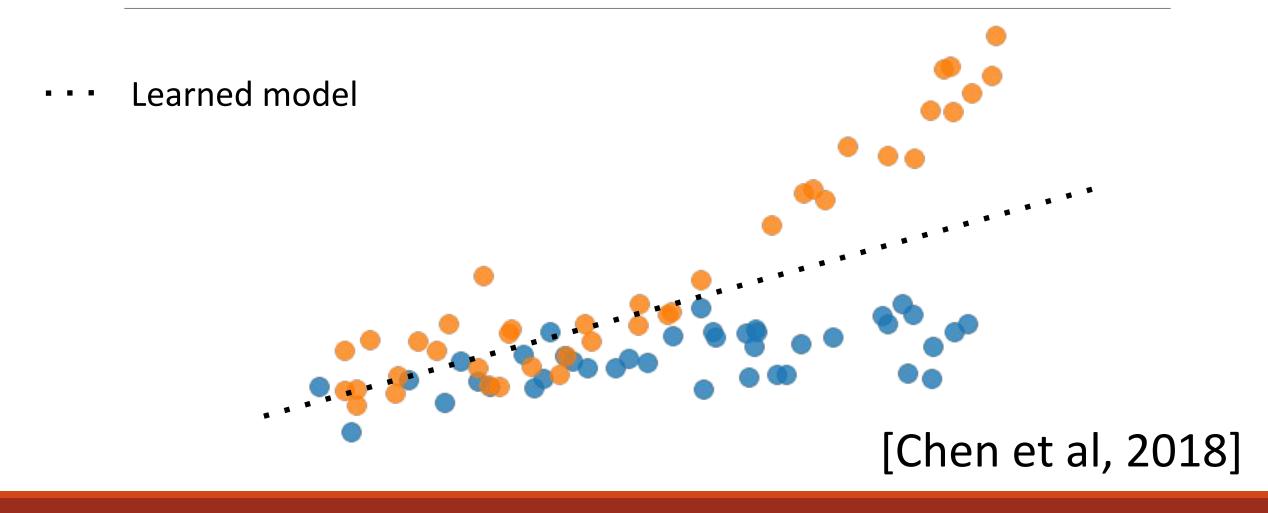


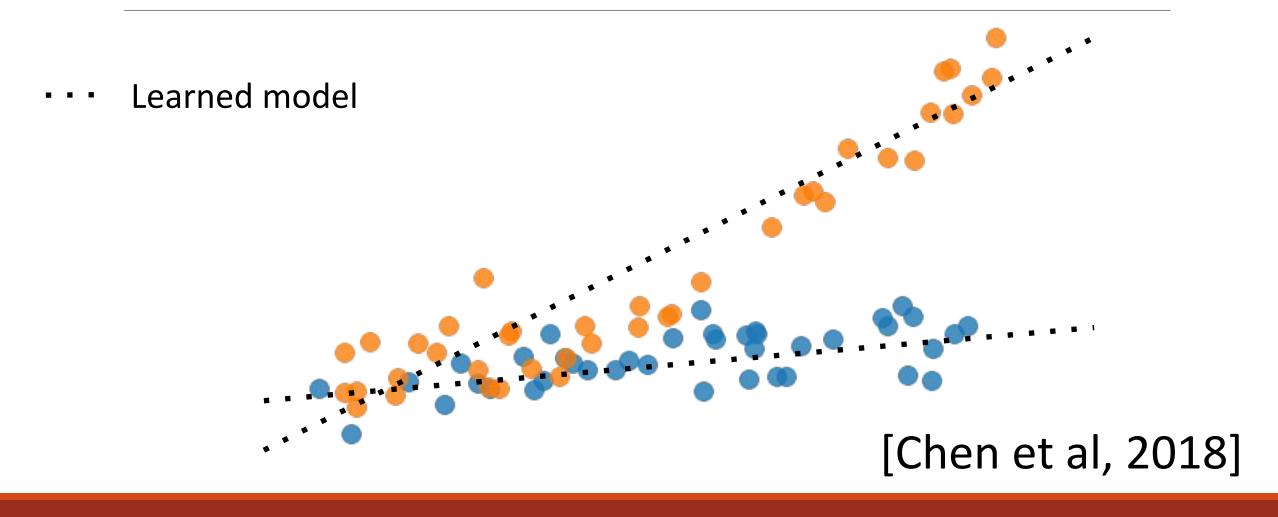
# Error from variance can be solved by collecting more samples.

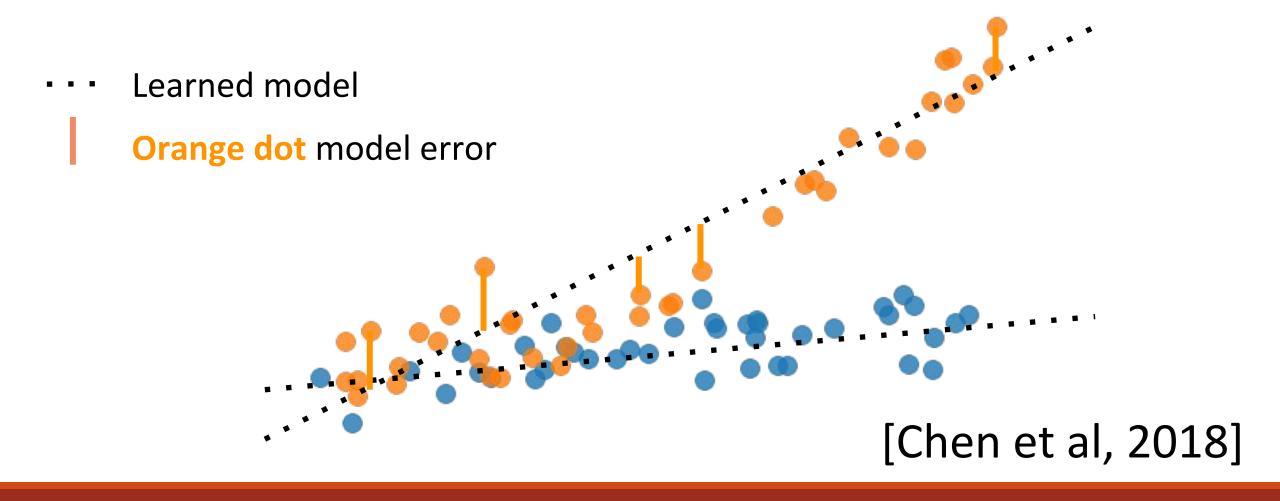


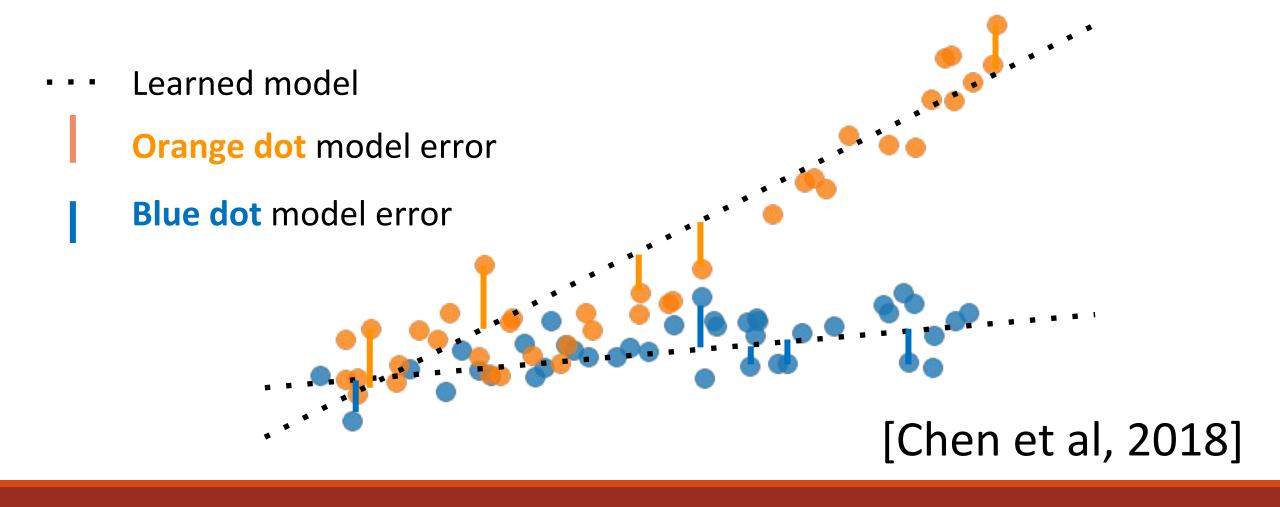
Why might my classifier be unfair?



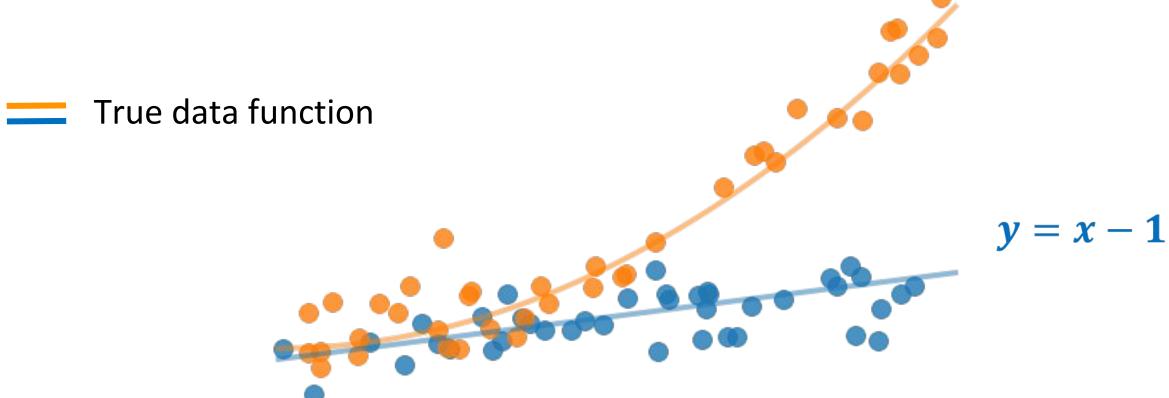








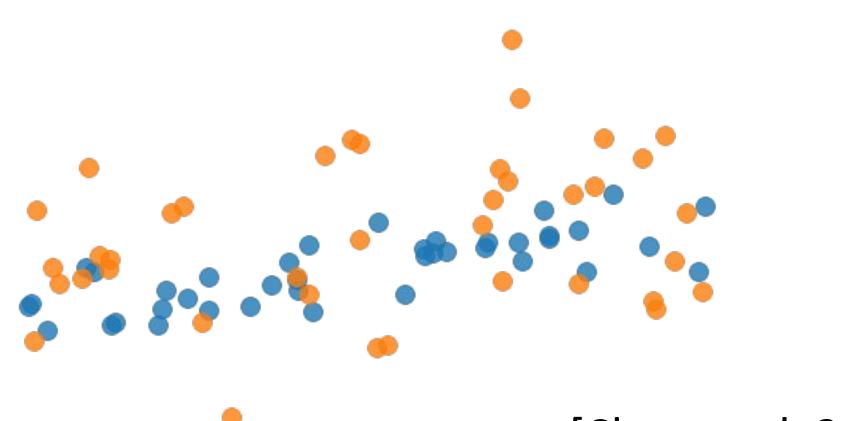
 $y = 0.5x^2$ 

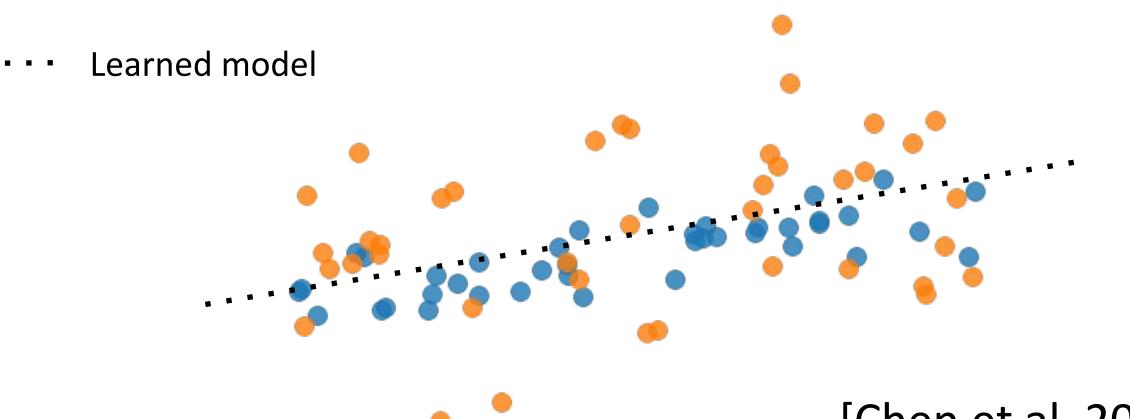


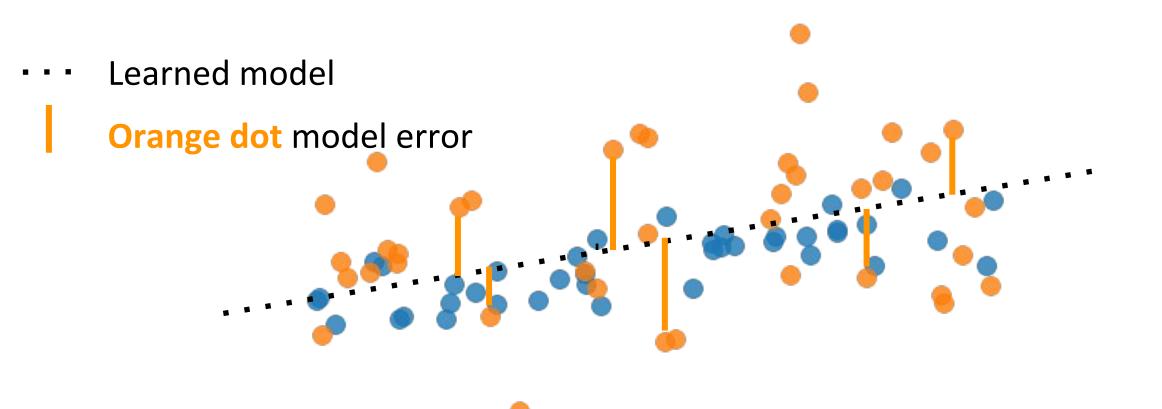
## Error from bias can be solved by changing the model class.



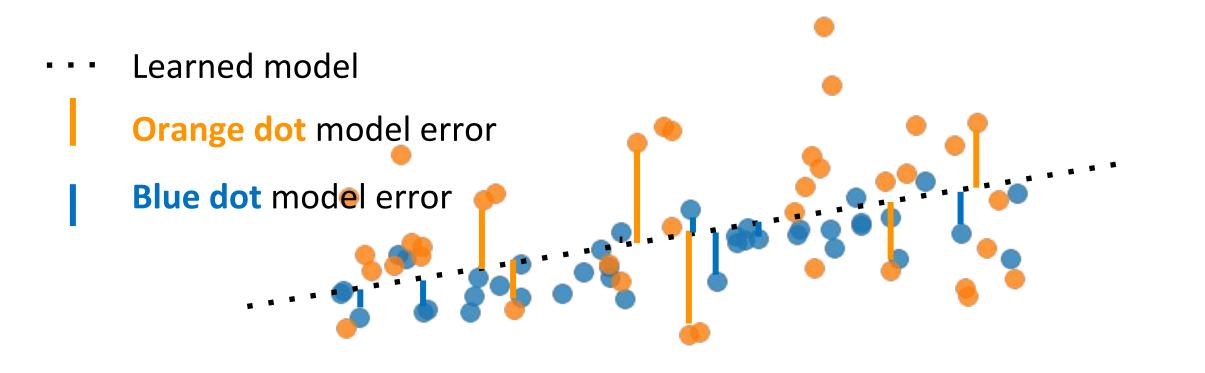
Why might my classifier be unfair?







## Why might my classifier be unfair?



# Error from noise can be solved by collecting more features.

Why might my classifier be unfair?

### Bias, variance, noise

We can decompose how a predictor  $\hat{Y}$  performs based on protected group a, features x, and data D through Bayes optimal predictor  $y^*$ , majority predictor  $\tilde{y}$ 

- o Bias  $B_a(\widehat{Y}, x, a) = L(y^*(x, a), \widetilde{y}(x, a))$
- o Variance  $V_a(\hat{Y}, x, a) = E_D[L(\tilde{y}(x, a), \hat{y}_D(x, a))]$
- o Noise  $N(x, a) = E_Y[L(y^*(x, a)) | X, A]$

[Domingos, 2000]

#### What about fairness?

We define fairness in the **context of loss** like false positive rate, false negative rate, etc.

For example, zero-one loss for data D and prediction  $\widehat{Y}$ :

$$\gamma_a(\widehat{Y}, Y, D) := P_D(\widehat{Y} \neq Y \mid A = a)$$

#### What about fairness?

We define fairness in the **context of loss** like false positive rate, false negative rate, etc.

For example, zero-one loss for data D and prediction  $\widehat{Y}$ :

$$\gamma_a(\widehat{Y}, Y, D) := P_D(\widehat{Y} \neq Y \mid A = a)$$

We can then formalize unfairness as group differences.

$$\bar{\Gamma}(\hat{Y}) := |\gamma_1 - \gamma_0|$$

We rely on accurate Y labels and focus on algorithmic error.

## Bias, variance, noise for fairness

**Theorem 1:** For error over group a given predictor  $\widehat{Y}$ :

$$\bar{\gamma}_a(\hat{Y}) = \bar{B}_a(\hat{Y}) + \bar{V}_a(\hat{Y}) + \bar{N}_a$$

Note that  $\overline{N}_a$  indicates the expectation of  $N_a$  over X and data D.

## Bias, variance, noise for fairness

**Theorem 1:** For error over group a given predictor  $\hat{Y}$ :

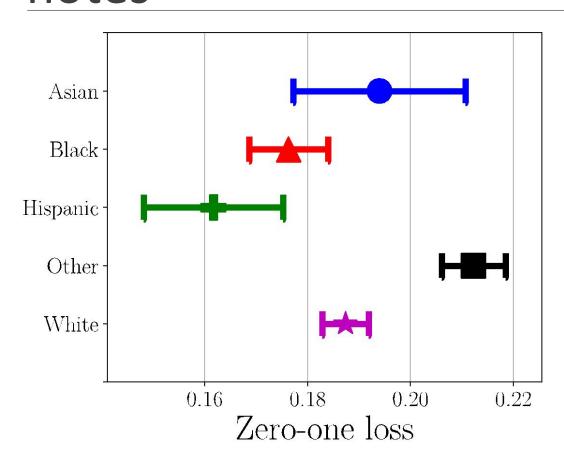
$$\bar{\gamma}_a(\hat{Y}) = \bar{B}_a(\hat{Y}) + \bar{V}_a(\hat{Y}) + \bar{N}_a$$

Note that  $\overline{N}_a$  indicates the expectation of  $N_a$  over X and data D.

Accordingly, the expected discrimination level  $\bar{\Gamma}$ : =  $|\bar{\gamma_1} - \bar{\gamma_0}|$  can be decomposed into differences in bias, differences in variance, and differences in noise.

$$\bar{\Gamma} = |(\bar{B}_1 - \bar{B}_0) + (\bar{V}_1 - \bar{V}_0) + (\bar{N}_1 - \bar{N}_0)|$$

# Mortality prediction from MIMIC-III clinical notes



1. We found statistically significant racial differences in zero-one loss.

Asian

Black

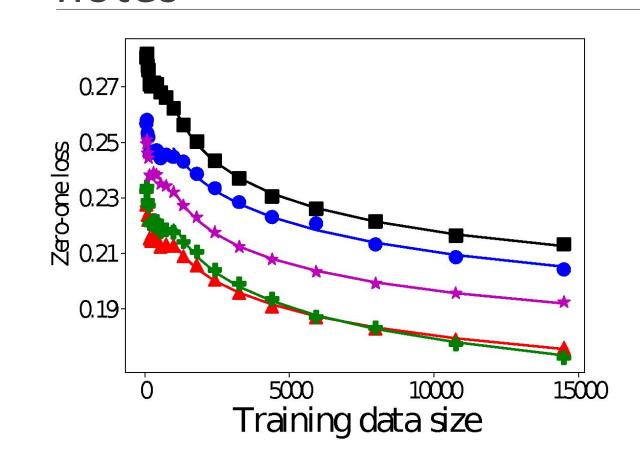
Hispanic

ı Other

White

# Mortality prediction from MIMIC-III clinical notes

Hispanic



Black

Asian

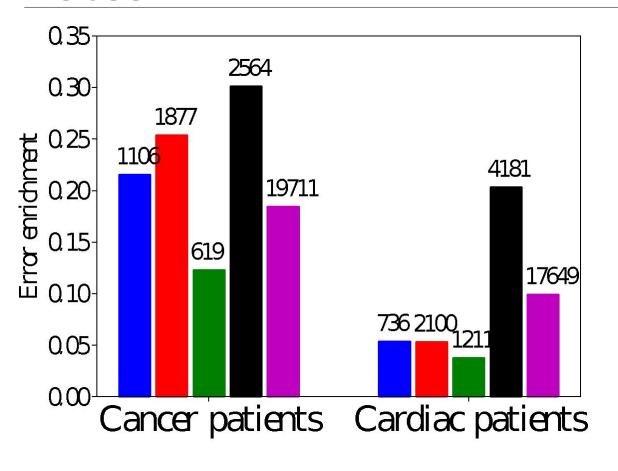
- We found statistically significant racial differences in zero-one loss.
- By subsampling data, we fit inverse power laws to estimate the benefit of more data and reducing variance.

Other

White

# Mortality prediction from MIMIC-III clinical notes

Hispanic



Black

Asian

- We found statistically significant racial differences in zero-one loss.
- 2. By subsampling data, we fit inverse power laws to estimate the benefit of more data and reducing variance.
- Using topic modeling, we identified subpopulations to gather more features to reduce noise.

White

Other

#### Other Fairness in Healthcare

- Dermatology: "AI-Driven Dermatology Could Leave Dark-Skinned Patients Behind" (The Atlantic, Aug 2018)
- o Clinical trials population: "Clinical Trials Still Don't Reflect the Diversity of America" (NPR, Dec 2015)
- o End of life care: "Modeling Mistrust in End-of-Life Care" (MLHC 2018)
- o Alzheimer's detection from speech: "Technology analyzes speech to detect Alzheimer's" (YouAreUNLTD, May 2018)
- o Cardiovascular Disease: "Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk" (Annals of Internal Medicine, July 2018)

#### What's next?

- How should we define fairness? How should it differ for healthcare, criminal justice, or other fields?
- What does it mean to study fairness or un-fairness?
- How can we "certify" fairness? If smaller components are all fair, does that mean the composite is fair?
- What does auditing a model entail? How might a model's intended use and training data differ?
- What are protected groups? What about intersectionality?
- What about downstream effects over time? How can humans help or hurt?

