Fairness, Ethics, and Healthcare

IRENE CHEN (MIT)

CSC2541HS GUEST LECTURE

"Tuskegee Study of Untreated Syphilis in the Negro Male" (1932)

Ethics in healthcare is nothing new

- Drug pricing: The strange world of Canadian drug pricing (The Toronto Star, Jan 2019)
- Opioid epidemic: Massachusetts Attorney General Implicates Family Behind Purdue Pharma In Opioid Deaths (NPR, Jan 2019)
- Retracted studies: Harvard Calls for Retraction of Dozens of Studies by Noted Cardiac Researcher (NYT, Oct 2018)
- Conflict of interest: Sloan Kettering's Cozy Deal with Start-Up Ignites a New Uproar (NYT, Sept 2018)
- Clinical trial populations: Clinical Trials Still Don't Reflect the Diversity of America (NPR, Dec 2015)

What about algorithms?

Algorithms change the discussion

- What is reasonable safety for autonomous systems?
- Is the patient informed about risks and benefits?
- What about privacy and data collection?
- Who should regulate? Should these be for-profit black box algorithms?
- What about diversity? What populations are these tested on and then applied to?

Would you be okay with an algorithm for:

- Cardiovascular disease risk to prescribe treatment?
- Government disability severity to allocate care?
- Child endangerment risk to decide in-home visits?

Ann Intern Med. 2018 Jul 3;169(1):20-29. doi: 10.7326/M17-3011. Epub 2018 Jun 5.

Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk.

Yadlowsky S1, Hayward RA2, Sussman JB2, McClelland RL3, Min YI4, Basu S5.

SCIENCE

WHAT HAPPENS WHEN AN ALGORITHM CUTS YOUR HEALTH CARE

By Colin Lecher | @colinlecher | Mar 21, 2018, 9:00am EDT

Illustrations by William Joel; Photography by Amelia Holowaty Krales

[Hardt, 2018]

Formalization of Fairness

- Fairness through blindness
- Demographic parity (or group fairness or statistical parity)
- Calibration (or predictive parity)
- Error rate balance (or equalized odds)
- Representation learning
- Causality and fairness
- ... and many others! [Narayanan et al, 2018]

Discussion points

- What are relevant protected groups?
- O How do we define or measure unfairness?
- What are areas of healthcare where we might be concerned about bias?

Fairness through Blindness

- Plan: Remove any sensitive group from data
- **Example**: Predict diabetes risk Y from clinical features X and race A using $P(\hat{Y} = Y | X)$ instead of $P(\hat{Y} = Y | X, A)$

O Problems:

- \circ A might have predictive value. What if Y = A?
- Other features of X might be correlated with A

Demographic parity

- o **Plan**: Require same fraction of $\hat{Y} = 1$ for each group A
- **Example**: Predict diabetes risk Y from clinical features X and race A such that $P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$

O Problems:

- What if true Y perfectly correlates with A?
- o Too strong: even perfect prediction $Y = \hat{Y}$ doesn't satisfy requirements
- Too weak: doesn't control error rate, could be perfectly biased (wrong for all A = 1, correct for A = 0) and still have demographic parity

Calibration

- Plan: Same positive predictive value across groups
- Example: Predict diabetes risk Y from score S with threshold T from clinical features X and race A such that

$$P(Y = 1|S > T, A = 0)$$

= $P(Y = 1|S > T, A = 1)$

O Problems:

Might be in conflict with error rate balance

[Chouldechova, 2018]

Error rate balance

- Plan: Same positive predictive value across groups
- Example: Predict diabetes risk Y from score S with threshold T from clinical features X and race A such that

$$P(S > T|Y = 0, A = 0)$$

= $P(S > T|Y = 0, A = 1)$

- O Problems:
 - Might be in conflict with calibration

[Chouldechova, 2018]

Representation learning

- Plan: Learn latent representation to minimize group information
- Example: Predict diabetes risk Y from score S with threshold T from clinical features X and race A such that

 $\max I(X; Z)$ and $\min I(A; Z)$

O Problems:

 How to ensure you are not losing too much info and learning right representation?

[Zemel et al, 2013]

Causal inference and fairness

- o Plan: Group A should not be cause of prediction \widehat{Y}
- Example: Predict diabetes risk Y from clinical features X and race A such that

$$P(\hat{Y}_{A\leftarrow a}\;(U)=y\mid X=x,A=a)$$
 $=P(\hat{Y}_{A\leftarrow a'}(U)=y\mid X=x,A=a)$
 $=P(\hat{Y}_{A\leftarrow a'}(U)=y\mid X=x,A=a)$

- Creating a st
- Creating a structural model encodes prior beliefs about world
- Causal inference often requires ignorability assumptions

[Kusner et al, 2017]

What about the data?

Predicting hospital mortality from MIMIC

- O Using clinical notes, can we predict hospital mortality from MIMIC data?
- We train a L1-regularized logistic regression.
- O How do the accuracies differ by racial group?
- What might cause these discrepancies?

Error from variance can be solved by collecting more samples.

Why might my classifier be unfair?

 $y = 0.5x^2$

Error from bias can be solved by changing the model class.

Why might my classifier be unfair?

Why might my classifier be unfair?

Error from noise can be solved by collecting more features.

Why might my classifier be unfair?

Bias, variance, noise

We can decompose how a predictor \hat{Y} performs based on protected group a, features x, and data D through Bayes optimal predictor y^* , majority predictor \tilde{y}

- o Bias $B_a(\widehat{Y}, x, a) = L(y^*(x, a), \widetilde{y}(x, a))$
- o Variance $V_a(\hat{Y}, x, a) = E_D[L(\tilde{y}(x, a), \hat{y}_D(x, a))]$
- o Noise $N(x, a) = E_Y[L(y^*(x, a)) | X, A]$

[Domingos, 2000]

What about fairness?

We define fairness in the **context of loss** like false positive rate, false negative rate, etc.

For example, zero-one loss for data D and prediction \widehat{Y} :

$$\gamma_a(\widehat{Y}, Y, D) := P_D(\widehat{Y} \neq Y \mid A = a)$$

What about fairness?

We define fairness in the **context of loss** like false positive rate, false negative rate, etc.

For example, zero-one loss for data D and prediction \widehat{Y} :

$$\gamma_a(\widehat{Y}, Y, D) := P_D(\widehat{Y} \neq Y \mid A = a)$$

We can then formalize unfairness as group differences.

$$\bar{\Gamma}(\hat{Y}) := |\gamma_1 - \gamma_0|$$

We rely on accurate Y labels and focus on algorithmic error.

Bias, variance, noise for fairness

Theorem 1: For error over group a given predictor \widehat{Y} :

$$\bar{\gamma}_a(\hat{Y}) = \bar{B}_a(\hat{Y}) + \bar{V}_a(\hat{Y}) + \bar{N}_a$$

Note that \overline{N}_a indicates the expectation of N_a over X and data D.

Bias, variance, noise for fairness

Theorem 1: For error over group a given predictor \hat{Y} :

$$\bar{\gamma}_a(\hat{Y}) = \bar{B}_a(\hat{Y}) + \bar{V}_a(\hat{Y}) + \bar{N}_a$$

Note that \overline{N}_a indicates the expectation of N_a over X and data D.

Accordingly, the expected discrimination level $\bar{\Gamma}$: = $|\bar{\gamma_1} - \bar{\gamma_0}|$ can be decomposed into differences in bias, differences in variance, and differences in noise.

$$\bar{\Gamma} = |(\bar{B}_1 - \bar{B}_0) + (\bar{V}_1 - \bar{V}_0) + (\bar{N}_1 - \bar{N}_0)|$$

Mortality prediction from MIMIC-III clinical notes

1. We found statistically significant racial differences in zero-one loss.

Asian

Black

Hispanic

ı Other

White

Mortality prediction from MIMIC-III clinical notes

Hispanic

Black

Asian

- We found statistically significant racial differences in zero-one loss.
- By subsampling data, we fit inverse power laws to estimate the benefit of more data and reducing variance.

Other

White

Mortality prediction from MIMIC-III clinical notes

Hispanic

Black

Asian

- We found statistically significant racial differences in zero-one loss.
- 2. By subsampling data, we fit inverse power laws to estimate the benefit of more data and reducing variance.
- Using topic modeling, we identified subpopulations to gather more features to reduce noise.

White

Other

Other Fairness in Healthcare

- Dermatology: "AI-Driven Dermatology Could Leave Dark-Skinned Patients Behind" (The Atlantic, Aug 2018)
- o Clinical trials population: "Clinical Trials Still Don't Reflect the Diversity of America" (NPR, Dec 2015)
- o End of life care: "Modeling Mistrust in End-of-Life Care" (MLHC 2018)
- o Alzheimer's detection from speech: "Technology analyzes speech to detect Alzheimer's" (YouAreUNLTD, May 2018)
- o Cardiovascular Disease: "Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk" (Annals of Internal Medicine, July 2018)

What's next?

- How should we define fairness? How should it differ for healthcare, criminal justice, or other fields?
- What does it mean to study fairness or un-fairness?
- How can we "certify" fairness? If smaller components are all fair, does that mean the composite is fair?
- What does auditing a model entail? How might a model's intended use and training data differ?
- What are protected groups? What about intersectionality?
- What about downstream effects over time? How can humans help or hurt?

